NEW STANDARD ACADE

CLASS: 12TH NEET Time: 3 HRS Date: 12-08-24

PHYSICS

- 1. The de-Broglie wavelength of an electron having 80 eV of energy is nearly (1eV = 1.6×10^{-19} J, mass of electron = 9×10^{-31} kg and Planck's constant = 6.6×10^{-34} J-sec)
 - (a) 140 Å
- (b) 0.14 Å
- (c) 14 Å
- (d) 1.4 Å
- 2. The de Broglie wavelength associated with a hydrogen atom moving with a thermal velocity of 3 km/s will be
 - (a) 1Å
- (b) 0.66 Å
- c) 6.6 Å
- (d) 66 Å
- 3. When a radiation is incident on a photoelectron emitter, the stopping potential is found to be 9 V. If e/m for the electron is 1.8 x 10¹¹ C/kg, the maximum velocity of the ejected electrons is
 - (a) 6×10^{50}
- (b) 8×10^5 m/s
- (c) 1.8×10^6 m/s
- (d) 1.8×10^5 m/s
- 4. Photoelectric emission is observed from a metallic surface for frequencies v_1 and v_2 of the incident light rays $(v_1 > v_2)$ If the maximum values of kinetic energy of the photoelectrons emitted in the two cases are in the ratio of 1: k, then the threshold frequency of the metallic surface is

- 5. A proton, a neutron, an electron and an α particle have same energy. Then, their de Broglie wavelengths compare as
 - $(a)\lambda_p = \lambda_n > \lambda_e > \lambda_\alpha$
 - (b) $\lambda \alpha < \lambda_p = \lambda_n < \lambda_e$
 - (c) $\lambda_n < \lambda_p = \lambda_n > \lambda \alpha$
 - (d) $\lambda_e = \lambda_p = \lambda_n = \lambda \alpha$
- 6. An electron is moving with an initial velocity $v = v_0 \hat{i}$ and is in a magnetic field $B = B_0 \hat{i}$ Then, its de Broglie wavelength
 - (a) remains constant
 - (b) increases with time
 - (c) decreases with time

- (d) increases and decreases periodically
- 7. A particle is dropped from a height H. The de-Broglie wavelength of the particle as a function of height is proportional to
 - (a) H
- (b) $H^{1/2}$
- (c) H^0
- (d) $H^{-1/2}$
- 8. An electron (mass m) with an initial velocity $v=v_0i(v_0>0)$ is in an electric field $E = -E_0 \hat{i}$ ($E_0 = constant > 0$). its de Broglie wavelength at time t is given by

 - (a) $\frac{\lambda_0}{\left[1 + \frac{eE_0}{m} \frac{t}{v_0}\right]}$ b) $\lambda_0 \left[1 + \frac{eE_0}{m} \frac{t}{v_0}\right]$
 - (c) λ_0
- 9. The de Broglie wavelength of a photon is twice the de-Broglie wavelength of an electron. The speed of the electron is $v_e =$ $\frac{c}{100}$ then,

- a) $\frac{E_e}{E_p} = 10^{-4}$ b) $\frac{E_e}{E_p} = 10^{-2}$ c) $\frac{p_e}{m_e c} = 10^{-2}$ d) $\frac{p_e}{m_e c} = 10^{-4}$
- 10. The ratio of momenta of an electron and an α particle which are accelerated from rest by a potential differ- ence of 100 V is

- 11. The kinetic energy of an electron which is accelerated through a potential of 100 V is
 - (a) 1.602×10^{-17} J
 - (b) 418.6 calories
 - (c) 1.16 x 10 K
 - (d) 6.626×10^{-3} W
- 12. A charge of magnitude 3e and mass 2m is moving in an electric field E. The acceleration imparted to the charge is
 - (a) 2Ee/3m
 - (b) 3Ee/2m
 - (c) 2m/3Ee
 - (d) 3m/2Ee
- 13. The de-Broglie wavelength associated with the particle of mass m moving with velocity v is

- (a) h/mv
- (b) mv/h
- (c) mh/v
- (d) 4×10^4
- 14. The de-Broglie wavelength λ associated with an elec tron having kinetic energy E is given by the expression
 - a) $\frac{h}{\sqrt{2mE}}$
- b) $\frac{2h}{mE}$
- c) 2mhE
- d) $\frac{2\sqrt{2mE}}{h}$
- 15. Energy conversion in a photoelectric cell takes place from
 - a) Chemical to electrical
 - b) Magnetic to electrical
 - c) Optical to electrical
 - d) Mechanical to electrical

CHEMISTRY

- 1. Trimethylene dichloride is
 - a)Alkyl halide
- b) Geminal dihalide
- b) Vicinal dihalide
- d) Poymethylene dihalide
- 2. Allyl chloride is
 - a) Monohalogen derivative
 - b) Dihalogen derivative
 - c) Trihalogen derivative
 - d) Tetrahalogen derivative
- 3. When on reacts with bromine in presence of heat or ultraviolet light the major product from is

a)

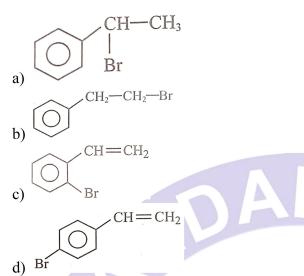
b)

c)

$$O_2N$$
 CH_2
 CH_2
 Br

4. Choos the correct name of the compound.

- a) Chloroformyl chloroethane
- b) 1,2-Dichloropropanal


d)

- c) 1,2-Dichloropropanone
- d) 2- Chloropropanoyl Chloride
- 5. Cyclohexene on reacting with bromine in presence of ultraviolet light produces as a major product

- 6. Molecular structure of crotyl bromide is
 - a) CH₃- CH=CH-CH₂-Br
 - B) $CH_3 CH_2 CH = CH Br$
 - C) CH₂=CH-CH₂- CH₂-Br
 - D) CH₃- CH=C- CH₃

 Br
- 7. Most reactive alcohol towards Lucas reagent is
 - a) Primary alcohol
 - b) Secondary alcohol
 - c) Tertiary alcohol
 - d) Isoalcohol
- 8. Ethyl alcohol on heating with sodium bromide and conc.H₂SO₄ produces
 - a) Bromo ethane
 - b) Ethylene
 - c) Ethylene dibromide
 - d) Ethane
- 9. Indentify the product of reaction

$$CH = CH_2 + HBr \rightarrow ?$$

- 10. During the formation of 2-chloropropane from propane the intermediate formed is
 - a) n-propyl free radical
 - b) sec. propyl free radical
 - c) sec. propyl carbonium ion
 - d) sec. propyl carbanion
- 11. Which reaction is termed Darzen's reaction
 - a) ROH + HCI
 - b) $ROH + PCI_5$,
 - c) $ROH + SOCI_2$,
 - d) $ROH + PCI_3$,
- 12. The reaction of silver carboxylates with bromine dissolved in carbon tetrachloride is called
 - a) Hofmann reaction
 - b) Rosenmund reaction
 - c) Borodine Hunsdiecker reaction
 - d) Hypobromide reaction
- 13. Which of the following has the highest boiling point?
 - a) CH₃CH₂I
 - b) CH₃I
 - c) CH₃Cl
 - d) CH₃Br
- 14. Which of the following has highest dipole moment?
 - a) CH₃Cl
 - b) CH₃Br
 - c) CH₃F
 - d) CH₃I
- 15. In S_N 1 the first step involves the formation of
 - a) free radical
 - b) cabocation
 - c) carbanion
 - d) final product

BIOLOGY

- 1. The Abingdon tortoise in Galapagos islands became extinct due to introduction of
 - a) Goat
- b) Sheep
- c) Dog
- 4) Cow
- 2. Amensalism is _____ a) (+) and (0)
- type of Interaction: b) (0) and(-)
- c) (+) and (-)
- d) (-) and (-)
- 3. An orchid growing as an epiphyte on a mango tree is an example of:
 - a) Parasitism
- b) predation
- c) Commensalism
- d) Mutualism
- 4. Plant and herbivore relationship is an example of:
 - a) Parasitism
- b) Competition
- c) predation
- d) Commensalism
- 5. The presence of a predatory species a) always drives a prey species to extinction.
 - b) Can positively affect a prey species by having a detrimental effect on competing species.
 - c) indicates that the climax stage of succession has been reached.
 - d) None of the above.
- 6. Parasitism differs from predation because a) the presence of parasitism doesn't lead to selection for defensive adaptations in parasitized species.
 - **b)** parasites and the species they parasitize never engage in an evolutionary "arms race."
 - c) parasites don't have strong effects on the populations of the species they parasitize.
 - d) None of the above.
- 7. The elimination of predators by humans a) will cause its prey to experience exponential growth until new predators arrive or evolve.
 - b) will lead to an increase in the carrying capacity of the environment.
 - c) may increase the population size of a prey species if that prey's population was being regulated by predation from the predator.
 - d) will lead to an Allee effect.
- 8. Select an incorrect statement for parasitism/parasites/ predators
 - a) Predators are quite mobile and capable of capturing the prey

- b) Hosts also develop defensive mechanisms to protect themselves from the parasites, as in the case of limbless hosts.
- c) Parasites have good means of dispersal and require specialized structures to reach or invade the host
- d) The newly acquired predators and parasites are often more damaging than the older ones, since the latter are familiar and the species getting affected have adjusted
- 9. Gause's principle of competitive exclusion states that:
 - a) no two species can occupy the same niche indefinitely for the same limiting resources.
 - b) larger organisms exclude smaller ones through competition.
 - c) more abundant species will exclude the less abundant species through competition.
 - d) competition for the same resources excludes species having different food preferences
- 10. Asymptote in a logistic growth curve is obtained when:
 - a) K>N
 - b) K<N.
 - c) the value of "r" approaches zero.
 - d) K = N.
- 11. Mycorrhizae are the example of
 - a) antibiotics.
- b) mutualism
- c) fungistasis
- d) amensalism.
- 12. Which one of the following population interactions is widely used in medical science for the production of antibiotics?
 - a) commensalism
- b) amensalism
- c) parasitism
- d) mutualism
- 13. In a growing population of a country,
 - a) pre-reproductive individuals are more than the reproductive individuals.
 - b) pre-reproductive individuals are less than the reproductive individuals
 - c) reproductive and pre-reproductive individuals are equal in number.
 - d) reproductive individuals are less than the post- reproductive individuals.
- 14. Natality refers to:
 - a) birth rate.
 - b) number of individuals leaving the habitat.
 - c) death rate.
 - d) number of individuals entering a

habitat.

- 15. A biologist studied the population of rats in a barn. He found that the average natality was 250, average mortality 240, immigration 20, and emigration 30. The net increase in population is.
 - a) 5.
- b) 0.
- c) 10.
- d) 15.

